Particle response studies

P. Silva (CERN)

HGCAL sofware meeting

Tuesday, 2nd September 2014

Scope

Basis for optimal calorimeter response

- How do the different particles interact with the sensitive and passive elements?
- Where do they interact?
- What are the characteristics of the showers?
- What is the calibration needed to apply to the reconstructed hits?
- What is the expected resolution at each step: simulation, digitization, reconstruction, PF?
- How do the simulation models compare to the data?

Our current strategy is to compare two independent benchmarks

- standalone simulation versus CMSSW full simulation
- standalone is flexible to compare with previous simulations/measurements from CALICE
- CMSSW integrates the final geometry, material in front of HGCal and magnetic field
- Next slides: highlight some of the current results and next steps regarding these studies

Simulation setups

Standalone simulation

Pursued in parallel with respect to CMSSW

- highly flexible to compare to benchmarks (CALICE), simulate test-beam
- independent cross-check: debugging tool for CMSSW
- lightweight: for design optimisation

Code is available in git-hub

- https://github.com/pfs/PFCal/tree/master/PFCalEE
- implements simple stack geometry or a full endcap
- based on "sampling sections": very easy to vary material, absorber width etc...
- particle gun or HepMC-based interfaces used for the simulation
- output written in simple tree, with collection of HGC SimHits
- easy to analyze
- maintain with the same Geant4 version and physics lists used in CMSSW

P. Silva, A.-M. Magnan

CMSSW simulation

- Implements two possible geometries in CMSSW
 - concept geometry (v4) and TP description (v5) see link
 - radial ganging to be implemented

- All steps SIM-DIGI-RECO-PF are fully linked and operational
 - Commissioning every step and improving implementation
 e.g. alignment of the hits, material budgets, calibration, expected response, noise estimate,...
 - Crucial for optimal performance estimate of HGCal

Recent issues with CMSSW simulation

- [Material overburden in front of HGCal] besides the tracker, neutron moderator
- First implementation ~0.8X₀ and ~0.2λ
- Consequences:
 - many conversions + early π interactions
 - e.m. calibration with large 1st EE layer weight

Fix removing Al volumes (poliethylene only): impact on performance at high PU?

- [Jumping hits] Identified from muons travelling near boundaries of a sector
- Common to EE, HEF and HEB
 - not declaring region as dead zone properly
 - evaluating cell limits at wrong location
- Checks for PR#5132
 - require ganging to shift sim positions by a maximum of the new cell size : ok
 - all cells sequentially numbered : ok
 - dead zones properly flagged : ok so far
 - Handle properly HEB sectors: on-going

Particle response studies

Response studies for e/y

Standalone → **CMSSW**

Electron gun studies

- Some degradation in endcap configuration with respect to 0 degrees incidence is η-independent
- Agreement between standalone and Geant4 verified at SimHit level
- More studies in M. Sun's talk later

0.05 0.04 0.03 0.02 0.01 o.h CMSSW simulation 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 50 100

Geant4 endcap simulation

A.-M. Magnan, M. Sun,

simple sum

X_o weighted sum

simple sum

*X*_o weighted sum

0.2326 ± 0.01049

150

200

250

E [GeV]

V. Azzolini, P. Silva

P. Silva HGCAL so

0.09

0.08

0.07

0.06

Electron resolution at reconstruction level

- First cross checks using RecHits (top) and PF photons (below for CMS PF)
 - Slight offset obtained in calibration, higher stochastic term and ~1% noise obtained
 - Observe non-symmetric responses after clustering
 - Further studies on-going to understand origin and correct the effects, where possible

Towards hadronic calibration

- Details in A.-Marie's talk
- Validation against CALICE benchmark
 - using standalone setup
- Fe Absorber
 - 38 x 21 mm
 - Tail catcher: 9x 21mm +7x104mm
- Active material
 - 5-mm thick polystyrene scintillator
 - Lateral size 1x1m²
- Following JINST 7(2012) P09017, with help from M. Chadeeva (ITEP) and F. Simon (MPI)
- In the next slide highlight just current differences wrt to CMSSW implementation

Digitization model for pion resolution study

Timing cut of 150 ns

10 ___

A.-M. Magnan

MC digitization procedure

Conversion of MC signal from MeV to MIP ightarrow e_{MIP}

#

Generation of random number of photoelectrons n_{pe} from Poisson distribution with $\langle n_{pe} \rangle = e_{MIP} \cdot N_{pe}$ ($N_{pe}=11$)

IL.

Calculation of number of pixels n_{pixel} taking in account saturation and cross talk C:

$$n_{pixel} = N_{total} \cdot \frac{(1-x)}{(1-C\cdot x)}$$
 where $x = \exp(-n_{pe}/N_{total})$, $C = 0.25$, $N_{total} = 1156$

₩

Generation of random signal n_{pixel}^{new} from Gaussian distribution $Gaus(\langle n_{pixel} \rangle, \sigma_G)$ where $\sigma_G=3$ pixels (≈ 0.2 MIP)

1

Recalculation from pixel to MIP: $e_{MIP}^{new} = \frac{N_{total}}{N_{pe}} \cdot \ln(\frac{N_{total} - C \cdot n_{pixel}^{new}}{N_{total} - n_{pixel}^{new}})$

Adding noise hits from random event of pedestal run cell to cell

Adding 0.12 MIP gaussian noise everywhere

Adding 2.5% cross-talk / 3-cm edge Implementing exact granularity

Marina Chadeeva, ITEP

CALICE week at IPN Lyon, September 2009

HEB digitization (CMSSW implementation)

Timing cut for SimHits: 25 ns

Algorithm

- Convert MC signal from keV to MIP: N_{MIP}
- Generate random number of photoelectrons: $n_{pe} \sim \text{Poisson}(N_{MIP} \cdot N_{pe/MIP})$ with $N_{pe/MIP} = 11$
- Compute number of pixels accounting for cross talk: $n_{pixels} = N_{total} \cdot \frac{1-x}{1-C\cdot x}$ with $x=e^{-n_{pe}/N_{total}}$, C=0.25 and N_{total}=1156
- Generate signal randomly: $n_{pixel}^{new} = \text{Gaus}(n_{pixel}, \sigma_{pixel})$ where $\sigma_{pixel} = 3 \ (\approx 0.2 \text{MIP})$
- $\bullet \quad \text{Convert to MIP again } N_{MIP}^{new} = \frac{N_{total}}{N_{pe/MIP}} \cdot \ln \left(\frac{N_{total} C \cdot n_{pixel}^{new}}{N_{total} n_{pixel}^{new}} \right)$
- Add gaussian noise (MIP/Noise ~ 5)
- Produce digis if #ADC>4 (1 MIP, although in the next slide will show #ADC>2)

Next steps

- include 3x5 ns pre-time samples + 4x5ns in-time samples
- in-time time of arrival from the center of the detector
- Can be used for time studies

Global compensation for pion response

- Identify on an event-by-event basis the e.m. contribution
 - higher energy density expected for e.m. showers
 - different hit spectra for the e.m. content
 - apply global correction factor if e.m. fraction large
 - original method described in detail in CALICE AN 028 link
- Threshold is tuned to work for all energies
 - ~5 MIP is a good choice
 - use average energy per hit to define global correction factor

$$C_{global} = rac{N_i(e \leq e_{lim})}{N_i(e \leq e_{av})}$$

- C_{global} is anti-correlated with total reconstructed energy
 - \rightarrow use as correction factor: $\mathbf{E}_{\text{shower}} = \mathbf{E}_{\text{rec}} \times \mathbf{C}_{\text{global}}$
- e.m. fraction (C_{qlobal}) increases (decreases) with pion energy

CALICE → **HGCal**

- Using latest geometry
- Repeat calibration procedure as for CALICE
- Increase energy range up to 500 GeV
 - e_{lim}=10 MIP found to be better performing
- Global compensation affects mostly low E
 - observe gain in the resolution
 - stochastic/constant terms ~ 65% / 4%

Standalone → **CMSSW**

- Analysing μ, e, K⁰_L and π⁺ samples
 - full geometry and removing EE
 - ECAL contribution is non-negligible (enhanced by n moderator effect)
 - linear calibration obtained for HE: 19.85 λ-weighted MIP / GeV
 - Relative response: HEF/HEB = 0.46 ± 0.002
 - Work in progress to complete full calibration with EE

Towards PF calibration - I

- While work on calibration is being refined and cross-checked....
- Provide PF developers with minimal calibration setup, to start testing algorithms
 - needed for tracker-cluster linking, PF object energy estimation, re-clustering...
- Apply a linear regression to a weighted sum of energy deposits per layer
 - baseline weights are absorber interaction length (radiation length for e/γ)
 - after correcting for η differences, minimize: $\Delta^2 = \sum_{i=1}^{N_{\rm events}} \left(\sum_i w_i E_i + b E_{beam}\right)^2$ @ SimHit level

Π^{+}

Weights		_	E	Н			
		_	_	front	back	Offset	
	1	2-11	12-21	22-31	1-12	1-10	
Baseline	0.0280	0.0650	0.1050	0.1600	1.0000	1.6670	
Optimized	0.0113	0.0110	0.0077	0.0169	0.0896	0.1068	6.7677

K⁰

Weights			E	н			
			_	front	back	Offset	
	1	2-11	12-21	22-31	1-12	1-10	
Baseline	0.0280	0.0650	0.1050	0.1600	1.0000	1.6670	_
Optimized	0.0060	0.0113	0.0075	0.0168	0.0902	0.1051	6.8727

are meeting

P. Silva

Towards PF calibration - II

- First results using CMS PFCandidates, i.e. after clustering and linking
 - use the summed calorimeter-only energy of all PF candidates in a particle gun event
 - Find similar resolution to the one expected from the simple minimization scheme
 - However offset observed and also non-linearity at low energy

Pion candidates reconstructed with Pandora as well

-0.4

-0.2

- out of the box values ~90% PID efficiency
- inc. resolution ~3.7% (20-100) GeV taking track into account

HGCAL software meeting

∆ E/gen E

Conclusions and outlook

Conclusions and outlook

- Overview of current efforts in studying particle response in HGCal software group
- Validation implies starting from a benchmark
 - CALICE projections/measurements chosen to validate standalone simulation
 - HGCal implementation in standalone simulation to validate CMSSW results
- First results look coherent and promising
 - still much work ahead of us in understanding the details and commissioning simulation
 - currently concentrating on hadronic response calibration → needed for jets

Near future:

- finalize pion calibration in CMSSW with global compensation scheme
- study longitudinal and transverse shower properties, hit multiplicities
- compare different Geant4 physics lists (use in future to compare with test beam data)
- explore pileup subtraction techniques already at RecHit level: e.g. use PUPPI metrics

Backup

e/γ resolution

- Update for latest geometry ►
 - include 2mm and 4mm air gap versions
- Expected resolution is unchanged
 - Marginal dependency on air gap

PCB 1.2 mm W xx mm

Si 300 um A.-M. Magnan, P. Silva

e/γ profile in the transverse plane

